4.6 Article

A new moment-tensor decomposition for seismic events in anisotropic media

期刊

GEOPHYSICAL JOURNAL INTERNATIONAL
卷 188, 期 1, 页码 343-370

出版社

OXFORD UNIV PRESS
DOI: 10.1111/j.1365-246X.2011.05265.x

关键词

Earthquake dynamics; Seismic anisotropy; Theoretical seismology; Dynamics and mechanics of faulting

向作者/读者索取更多资源

Investigating the mechanisms of small seismic sources usually consists of three steps: determining the moment tensor of the source; decomposing the moment tensor into parameters that can be interpreted in terms of physical mechanisms and displaying those parameters. This paper concerns the second and third steps. Two existing methodsthe Riedesel-Jordan and Hudson-Pearce-Rogers parameters and displaysare reviewed, compared and contrasted, and advantages and disadvantages of the two methods are discussed. One disadvantage is that neither method takes into consideration the effect of anisotropy on the interpretation. In microseisms, anisotropy can be important. A new procedure based on the biaxial decomposition of the potency tensor is introduced which explicitly allows for anisotropy and interprets the moment tensor in terms of an isotropic pressure change and a displacement discontinuity on a fault. It is shown that this interpretation is always possible for any moment tensor whatever the anisotropy. To compare the pressure change with the displacement discontinuity, it is useful to be able to determine the volume change from the pressure source in any medium. This depends on the embedded bulk modulus, which differs from the normal bulk modulus. The embedded modulus in isotropic media is well known and the equivalent anisotropic result is derived in this paper. Interpreting a seismic source in terms of the volume change due to a pressure change and a displacement discontinuity on a fault allows a simple 3-D graphical glyph to be used to display the interpretation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据