4.6 Article

Landslide susceptibility mapping using geographically-weighted principal component analysis

期刊

GEOMORPHOLOGY
卷 226, 期 -, 页码 15-24

出版社

ELSEVIER
DOI: 10.1016/j.geomorph.2014.07.026

关键词

Geographically weighted principal component analysis (GWPCA); Fuzzy gamma operator; Landslide susceptibility mapping (ISM); Iran

向作者/读者索取更多资源

Landslide susceptibility mapping (ISM) documents the extent of probable landslide events in a region to investigate the distribution, pattern, recurrence and statistics of slope failure and consequent mass movement. Similar to other analyses of quantitative sources of spatial data, LSM sometimes uses principal component analysis (PCA), a form of multivariate statistical analysis. This approach helps identify susceptibility by grouping locations or by measuring the variation between groups. The present study outlines the principles and examines the capability of the proposed methodology for landslide mapping, considers optimized shapes for spatial units, estimates an efficient kernel size using alternating least squares (ALS) analysis confirmed by cross-validation, and uses geographically-weighted principal component analysis (GWPCA) to calculate landslide susceptibility using a fuzzy gamma operator. RMSE and PBIAS statistical estimators were then used to assess operational efficiency of all LSMs using fuzzy gamma operators (0.1 to 0.9). ROC curves were drawn for the best result for LSM using a landslide inventory containing 82 landslide points, with an area under curve of 0.889. The new tools can improve the quality of landslide-related analyses, including erosion studies and landscape modeling, susceptibility and hazard assessments, and risk evaluation. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据