4.6 Article

Hydrological responses and soil erosion potential of abandoned cropland in the Loess Plateau, China

期刊

GEOMORPHOLOGY
卷 138, 期 1, 页码 404-414

出版社

ELSEVIER
DOI: 10.1016/j.geomorph.2011.10.009

关键词

Hydrological response; Soil erosion; Scale effect; Revegetation; The Loess Plateau

资金

  1. National Natural Science Foundation of China [40930528, 40871085]
  2. State Forestry Administration of China [201004058]
  3. CAS/SAFEA

向作者/读者索取更多资源

Recent changes in hydrological processes and soil erosion in the Loess Plateau, China, are immediate responses to cropland abandonment for revegetation, which lead to a long-term decrease in runoff generation and soil erosion. However, detailed hydrological responses and soil erosion changes have not been clearly evaluated. In this study, two issues were focused on the plot scale. The first issue relates to changes in vegetation cover and soil properties during the early stages of revegetation. Given the occurrence of soil compaction, it was hypothesized that runoff increased during this period and the soil erosion did not significantly decline, even though vegetation increased. The second issue is the effect of scale on runoff and soil erosion. Three plot groups of three vegetation types and two restoration stages were established for comparative experiments. The results from these experiments confirmed that the soil compaction occurred during revegetation in this region. Greater runoff was produced in plot group that experienced both a longer restoration time and with higher vegetation cover (such as Groups 2 and 3 in this study) than that with a shorter restoration time and lower vegetation cover (Group 1). In addition, the total soil loss rates of all plot groups were rather low and did not significantly differ from each other. This indicates that a reduction in runoff generation and soil erosion, as a result of revegetation, was limited in the early stages of restoration following the cropland abandonment. With increasing plot area, the runoff coefficient decreased for the plot group with a longer revegetation time (Groups 2 and 3), but gently increased for the one with a shorter restoration time (Group 1). In Groups 2 and 3, soil loss rate decreased when plot area enlarged. In Group 1, it decreased before a plot area threshold of 18 m(2) was exceeded. However, the increase occurred when plot area crossed the threshold value. In conclusion, the high vegetation cover alone did not lead to reduction in the runoff coefficient during the early stages of revegetation. When evaluating hydrological and soil erosion responses to revegetation, the soil compaction processes should be considered. Additionally, the effect of scale on runoff and soil erosion was found to be dependent on restoration extent, and thus on restoration time. (C) 2011 Elsevier BY. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据