4.6 Article

The effects of exposure and climate on the weathering of late Pleistocene and Holocene Alpine soils

期刊

GEOMORPHOLOGY
卷 114, 期 3, 页码 466-482

出版社

ELSEVIER
DOI: 10.1016/j.geomorph.2009.08.008

关键词

Soil organic matter; Weathering; Alps; Exposure; Quaternary soils

资金

  1. Ministero delle Politiche Agricole e Forestali (Roma, Italia)

向作者/读者索取更多资源

The main aim of this study was to examine the influence of exposure and consequently climate, on the chemical weathering of soils which had developed after the ice retreat of the last glaciation in Northern Italy. This was done by comparing soils developing at north- and south-facing sites on siliceous parent material. There is very little data available on weathering rates and organic matter (OM) as a function of climate and exposure in such environments. Weathering rates (elemental leaching) over the whole lifetime of the soils are higher on north-facing sites. Total organic C and N contents, organic matter stocks and organic matter fractions were analysed to decipher the causes of this difference in weathering behaviour. For the organic matter fractions, we compared the easily oxiclisable and stable (resistant to H2O2 treatment) organic matter fractions, water-soluble phenolic materials and alkali ne-extractable fractions of the various sites. The abundance of soil organic carbon (SOC) tends to have a non-linear climate dependency. The highest amounts of SOC were measured near the timberline. In addition, compared to south-facing sites, soils on north-facing slopes have a higher organic matter content and a significantly lower degree of humification. Undecomposed or weakly degraded organic matter accumulated on north-facing sites due to less favourable thermal conditions and a higher acidity. With northern exposure, fulvic acids were more easily transported within the soil profile than humic acids and predominately gave rise to the migration (eluviation) of Fe and Al compounds due to their -COOH and -OH functional groups. Furthermore, water-soluble phenolic materials, which are more abundant on north-facing sites, have accelerated the leaching of Al. Accumulation of weakly degraded OM and the subsequently higher production of organic ligands have enhanced the eluviation of Fe and Al. Patterns of weathering processes in Alpine environments are strongly linked to biological and (micro)climatic factors which give rise to distinct differences between north- and south-facing sites. (C) 2009 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据