4.3 Article

Stimulation of Methanotroph Activity by Cu-Substituted Borosilicate Glass

期刊

GEOMICROBIOLOGY JOURNAL
卷 28, 期 1, 页码 1-10

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/01490451003614971

关键词

borosilicate glass; copper; dissolution; methane oxidation; Methylinosinus trichosporium OB3b

资金

  1. NSF [EAR 0433980, EAR 0750009]
  2. UK NERC [NE/F00608X/1]
  3. KU Geology Associates
  4. NERC [NE/F00608X/1] Funding Source: UKRI
  5. Natural Environment Research Council [NE/F00608X/1] Funding Source: researchfish

向作者/读者索取更多资源

Previous investigations have shown that bacteria can derive benefits from elements within mineral assemblages associated with/or proximal to their point of attachment; however to date, no study has shown a direct connection between mineral dissolution and the biological oxidation of the greenhouse gas methane (CH4). Here we investigate linkages between the Cu content of silicate glasses (Si-glasses) and CH4 oxidation rates in Methylosinus trichosporium OB3b, a type II methanotroph. A series of batch growth experiments were performed under varying solid phase Cu (0, 80, 200, 400, and 800 ppm Cu) and initial aqueous phase methane concentrations (40, 70, and 130 nM CH4). Under near equilibrium conditions, the release of Cu from the glasses increased in association with M. trichosporium OB3b activity. The acquisition of Cu from the glasses directly influenced CH4 oxidation rates of M. trichosporium OB3b, presumably by promoting the expression and activity of copper-containing particulate methane monooxygenase (pMMO), the most efficient MMO for methane oxidation produced. Highest CH4 oxidation rates were observed in glasses with 80 ppm Cu. However, rates generally displayed an inverted-U relationship with solid-phase Cu concentration; i.e., rates were lower with solid phase Cu concentrations 80 ppm or 200 ppm. We conclude that in situ methanotroph activity in soils and sediments is strongly influenced by ambient solid-phase Cu concentrations, which has important implications to interpreting greenhouse gas flux data in geologic settings.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据