4.3 Article

Non-Skeletal Biomineralization by Eukaryotes: Matters of Moment and Gravity

期刊

GEOMICROBIOLOGY JOURNAL
卷 27, 期 6-7, 页码 572-584

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/01490451003702990

关键词

ballast; barite; bassanite; calcium carbonate; calcium oxalate; celestite; gypsum; magnetite; magnetotaxis; polyphosphate; statoliths

资金

  1. NASA Astrobiology Institute

向作者/读者索取更多资源

Skeletal biomineralisation by microbial eukaryotes significantly affects the global biogeochemical cycles of carbon, silicon and calcium. Non-skeletal biomineralisation by eukaryotic cells, with precipitates retained within the cell interior, can duplicate some of the functions of skeletal minerals, e. g., increased cell density, but not the mechanical and antibiophage functions of extracellular biominerals. However, skeletal biomineralisation does not duplicate many of the functions of non-skeletal biominerals. These functions include magnetotaxis (magnetite), gravity sensing (intracellular barite, bassanite, celestite and gypsum), buffering and storage of elements in an osmotically inactive form (calcium as carbonate, oxalate, polyphosphate and sulfate; phosphate as polyphosphate) and acid-base regulation, disposing of excess hydroxyl ions via an osmotically inactive product (calcium carbonate, calcium oxalate). Although polyphosphate has a wide phylogenetic distribution among microbial eukaryotes, other non-skeletal minerals have more restricted distributions, and as yet there seems to be no definitive evidence that the alkaline earth components (Ba and Sr) of barite and celestite are essential for completion of the life cycle in organisms that produce these minerals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据