4.7 Article

Oxygenation of the Archean atmosphere: New paleosol constraints from eastern India

期刊

GEOLOGY
卷 42, 期 10, 页码 923-926

出版社

GEOLOGICAL SOC AMER, INC
DOI: 10.1130/G36091.1

关键词

-

类别

资金

  1. India Board of Research in Nuclear Sciences
  2. G. Ghosh, an India Department of Science and Technology [SR/WOS-A/ES-10/2010]
  3. Trinity College Dublin (TCD) FEMS
  4. Presidency University (Kolkata, India)
  5. CSIR research grant

向作者/读者索取更多资源

It is widely believed that atmospheric oxygen saturation rose from <10(-5) present atmospheric level (PAL) in the Archean to >10(-2) PAL at the Great Oxidation Event (GOE) at ca. 2.4 Ga, but it is unclear if any earlier oxygenation events occurred. Here we report U-Pb zircon data indicating that a pyrophyllite-bearing paleosol, from Keonjhar in the Precambrian Singhbhum Craton of eastern India, formed between 3.29 and 3.02 Ga, making it one of very few known Archean paleosols globally. Field and geochemical evidence suggests that the upper part of the paleosol was eroded prior to unconformable deposition of an overlying sequence of shallow-marine siliciclastic sediments. A negative cerium anomaly within the currently preserved level of the paleosol indicates that ancient oxidative weathering occurred in the original upper soil profile. The presence of redox-sensitive detrital uraninite and pyrite together with a complete absence of pyrophyllite in the overlying sediments indicate that the mineralogical and geochemical features of the paleosol were established prior to the unconformable deposition of the sediments and are not related to subsequent diagenetic or hydrothermal effects. We suggest that a transient atmospheric oxygenation event occurred at least 600 m.y. prior to the GOE and similar to 60 m.y. prior to a previously documented Archean oxygenation event. We propose that several pulsed and short-lived oxygenation events are likely to have occurred prior to the GOE, and that these changes to atmospheric composition arose due to the presence of organisms capable of oxygenic photosynthesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据