4.7 Article

Rainfall conditions, typhoon frequency, and contemporary landslide erosion in Japan

期刊

GEOLOGY
卷 42, 期 11, 页码 999-1002

出版社

GEOLOGICAL SOC AMER, INC
DOI: 10.1130/G35680.1

关键词

-

类别

资金

  1. Japan Society for the Promotion of Science [23-148, 25882037]
  2. German Research Foundation (DFG) [KO3937/6]
  3. Potsdam Research Cluster for Georisk Analysis, Environmental Change and Sustainability (PROGRESS)
  4. Grants-in-Aid for Scientific Research [25882037, 23501237, 22101001] Funding Source: KAKEN

向作者/读者索取更多资源

Dealing with predicted increases in extreme weather conditions due to climate change requires robust knowledge about controls on rainfall-triggered landslides. We explore relationships between rainfall and landslide size throughout the Japanese archipelago. We test whether the total volume of landslides can be predicted directly from rainfall totals, intensity, and duration using a nationwide inventory of 4744 rainfall-triggered landslides recorded from A.D. 2001 to 2011. We find that larger landslides were more abundant at the expense of smaller ones when total, maximum, and mean rainfall intensity exceeded similar to 250 mm, similar to 35 mm/h, and similar to 4 mm/h, respectively. Frequency distributions of these rainfall parameters are peaked and heavily skewed. Yet neither the most frequent nor the most extreme values of these rainfall metrics coincide consistently with the maximum landslide volumes. A striking decrease of landslide volumes at both mean and maximum rainfall intensity, as well as duration, points to an exhaustion in hillslope geomorphic response regardless of sample size, landslide type, mobilized volume, dominant lithology, or reporting bias. Our results underscore substantial offsets between the peaks of rainfall metrics and maximum associated landslide volumes, thus complicating straightforward estimates of geomorphic work from metrics of rainstorm magnitude or frequency. Only the rainfall total appears to be a suitable monotonic predictor of landslide volumes mobilized during typhoons and frontal storms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据