4.7 Article

Origin of giant wave ripples in snowball Earth cap carbonate

期刊

GEOLOGY
卷 40, 期 9, 页码 827-830

出版社

GEOLOGICAL SOC AMER, INC
DOI: 10.1130/G33093.1

关键词

-

类别

资金

  1. American Chemical Society
  2. Agouron Institute
  3. National Science Foundation [EAR-0739105]

向作者/读者索取更多资源

The most extreme climate transitions in Earth history are recorded by the juxtaposition of Neoproterozoic glacial deposits with overlying cap carbonate beds. Some of the most remarkable sedimentary structures within these beds are sharp-crested (trochoidal) bedforms with regular spacing of as much as several meters that are often interpreted as giant wave ripples formed under extreme wave conditions in a nonuniform postglacial climate. Here we evaluate this hypothesis using a new bedform stability diagram for symmetric oscillatory flows that indicates that the first-order control on the formation of trochoidal rather than hummocky bedforms is sediment size, not wave climate. New measurements of bedform wavelengths and particle sizes from the ca. 635 Ma Nuccaleena Formation, Australia, indicate that the giant ripples are generally composed of coarse to very coarse sand; most are within the trochoidal bedform stability phase space for normal wave climates. Moreover, numerical simulations of flow over fixed bedforms show that symmetric trochoidal ripples with a nearly vertical angle of climb may be produced over long time periods with variable wave climates in conjunction with rapid seabed cementation. These data reveal that, rather than extreme wave conditions, the giant wave ripples are a consequence of the unusual mode of carbonate precipitation during a global carbon cycle perturbation unprecedented in Earth history.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据