4.7 Article

Cellular energy conservation and the rate of microbial sulfate reduction

期刊

GEOLOGY
卷 37, 期 11, 页码 1027-1030

出版社

GEOLOGICAL SOC AMER, INC
DOI: 10.1130/G30185A.1

关键词

-

类别

资金

  1. Department of Energy Basic Energy Sciences Program [ER15507, ER15317]
  2. National Science Foundation [0819954]
  3. Division Of Earth Sciences
  4. Directorate For Geosciences [0819954] Funding Source: National Science Foundation

向作者/读者索取更多资源

Microbial sulfate reduction is subject to a thermodynamic limit arising from the microorganisms' need to save energy for maintenance and growth, and this limit prevents the process from proceeding until the supply of electron donor or sulfate has been consumed, as would be expected from commonly applied kinetic theory. In pure culture experiments, acetotrophic sulfate reduction stops when the energy liberated by the reaction falls to similar to 33-43 kJ.(mol SO(4)(2-))(-1), and an overlapping range of 40-56 kJ.( mol SO(4)(2-))(-1) is observed where sulfate reduction has ceased in experiments with microbial consortia, as well as in nature, in lacustrine, marine, and aquifer sediments. These observations correspond to an energetic requirement of 33-47 kJ.( mol SO(4)(2-))(-1) calculated on the basis of the cellular physiology of sulfate reducers. In sediments underlying Lake Washington, USA, variation of pore-water chemistry with depth can be explained by a reactive transport model accounting for cellular energy conservation, whereas a model in which thermodynamics are neglected predicts an unrealistic pattern. Energy availability constitutes a primary, if commonly overlooked, control on the distribution and rate of microbial sulfate reduction in nature and helps resolve apparent contradictions observed in the laboratory and natural environment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据