4.7 Article

Deuterium and oxygen isotopes, paleoelevations of the Sierra Nevada, and Cenozoic climate

期刊

GEOLOGICAL SOCIETY OF AMERICA BULLETIN
卷 122, 期 7-8, 页码 1106-1115

出版社

GEOLOGICAL SOC AMER, INC
DOI: 10.1130/B30001.1

关键词

-

资金

  1. National Science Foundation [EAR-0607831]

向作者/读者索取更多资源

Although geomorphic observations suggest that the Sierra Nevada has tilted so that the crest has risen 1-2 km since late Miocene time, deuterium and oxygen-18 isotope concentrations in Cenozoic geologic materials decrease eastward across California and Nevada similarly to those in modern, orographically induced precipitation, as if little change in Sierra Nevadan elevations has occurred since Eocene time. Orographic precipitation, however, depends on the amount of moisture in the atmosphere, which in turn can be much larger in warm air, as in Eocene or Oligocene time and in summer, than in the cooler air characteristic of present-day, dominantly winter, precipitation. Moreover, the integrated rainout of vapor, and hence presumably in stable isotope concentrations in the remaining vapor, depends largely on the difference in heights traversed by air masses, not slopes of mountain ranges. Thus, if due simply to orographically induced rainout, both Eocene and Oligocene variations in deuterium isotopes across the Sierra Nevada and Miocene-Quaternary differences in deuterium and oxygen isotopes between the Great Valley of California and the Basin and Range place only weak constraints on the slope or past elevations of the Sierra Nevada. They do not necessarily contradict the inference that the crest of the Sierra Nevada has risen 1000 m or more since late Miocene time.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据