4.7 Article

Effect of biochar on phosphorus sorption and clay soil aggregate stability

期刊

GEODERMA
卷 219, 期 -, 页码 162-167

出版社

ELSEVIER
DOI: 10.1016/j.geoderma.2013.12.022

关键词

Phosphorus; Phosphate; Soil structure; Erosion; Biochar

资金

  1. Ministry of Agriculture and Forestry of Finland
  2. Helsinki University Centre for Environment (HENVI)

向作者/读者索取更多资源

Soil structure is one of the key properties affecting the productivity of soils and the environmental side effects of agricultural soils. Poor surface soil structure increases the risk of soil erosion by water and eroded clay-sized particles can carry adsorbed phosphorus (P) to the surface waters, thus inducing eutrophication of receiving waterways. Management practices, e.g. reduced tillage, used to reduce erosion can lead to enrichment of P in the uppermost soil layers, which leads to elevated risk for dissolved P loss in the runoff water. In this study, we aimed to identify whether biochar (BC) could be used to reduce clay soil erosion by improving aggregate stability. Moreover, we tested whether the BC addition would change the P sorption affinity of the soil and help to reduce the loss of dissolved P. One sandy and two clayey soils were amended with BC (0,15 and 30 t ha(-1)) and after a 3week incubation, a wet-sieving method was used to measure the release of colloidal particles and the stability of aggregates. The sorption of P onto soil surfaces was estimated with a Q/I (quantity/intensity) plot technique. The BC used here had a very low P sorption affinity and the BC addition did not increase the sorption of P in incubated soils. However, for the two clayey soils, the BC additions increased aggregate stability and reduced detachment of colloidal material. The BC thus induced changes in soil properties that could be beneficial for erosion control and thereby aid in reducing particulate P losses from agricultural fields. (c) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据