4.7 Article

Soil extractable carbon and nitrogen, microbial biomass and microbial metabolic activity in response to warming and increased precipitation in a semiarid Inner Mongolian grassland

期刊

GEODERMA
卷 206, 期 -, 页码 24-31

出版社

ELSEVIER
DOI: 10.1016/j.geoderma.2013.04.020

关键词

Warming; Increased precipitation; Extractable organic carbon and nitrogen; Microbial biomass; Metabolic activity; Grassland

资金

  1. Griffith University
  2. Chinese Academy of Sciences [2010-Biols-CAS-0103]
  3. Chinese Academy of Agriculture [2012BAC19B04]
  4. National Natural Science Foundation of China [30925009]
  5. Postdoctoral Fellowship at Scion, New Zealand

向作者/读者索取更多资源

Few studies have examined the long-term responses of soil labile organic carbon (C) and nitrogen (N) and microbial activities to climate change in semiarid and arid regions. Here we investigated soil extractable organic carbon (EOC) and nitrogen (EON), microbial biomass and microbial metabolic activities at two depths of 0-10 and 10-20 cm in response to single and combined effects of warming and increased precipitation in a semiarid grassland of northern China since April 2005. Soil EOC and EON pools were measured using KCl and hot water extractions, and microbial metabolic activities were measured using MicroResp. Results showed that warming had no effects on EOC, EON and microbial biomass C (MBC) and N (MBN) in the two extracts as well as the ratio of MBC to MBN at the two depths, but increased precipitation significantly increased MBC, MBN, EON and microbial quotient at the 0-10 cm depth. Warming significantly decreased microbial metabolic activities at both soil depths, but significantly increased microbial metabolic diversity (H) and evenness (E) at the 10-20 cm depth. Increased precipitation significantly decreased microbial metabolic activities, but significantly increased H and E at the two depths. Warming and increased precipitation significantly interacted to affect microbial metabolic activities at the two depths as well as H and Eat the 10-20 cm depth. Redundancy analysis determined that microbial quotient, i.e., the ratio of MBC to total C, pH and NH4+-N greatly accounted for the variances in the soil microbial metabolic profiles, but the ratio of EOC to EON, moisture and microbial quotient largely accounted for the variances in the soil microbial metabolic profiles specifically at the 10-20 cm depth, implying that microbial physiology such as microbial quotient rather than the amounts of labile organic C and N pools exerted more influence on driving the patterns of microbial metabolic profiles. Our results indicated that soil EOC and EON, microbial biomass and microbial metabolic activities at the two depths differentially responded to warming and increased precipitation in this semiarid region. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据