4.7 Article

Heavy metals in European soils: A geostatistical analysis of the FOREGS Geochemical database

期刊

GEODERMA
卷 148, 期 2, 页码 189-199

出版社

ELSEVIER
DOI: 10.1016/j.geoderma.2008.09.020

关键词

Soil mapping; Regression-kriging; MODIS; Night lights image; Geochemical database; Pan-European monitoring

向作者/读者索取更多资源

This paper presents the results of modeling the distribution of eight critical heavy metals (arsenic, cadmium, chromium, copper, mercury, nickel, lead and zinc) in topsoils using 1588 georeferenced samples from the Forum of European Geological Surveys Geochemical database (26 European countries). The concentrations were mapped using regression-kriging (RK) and accuracy of predictions evaluated using the leave-one-out cross validation method. A large number of auxiliary raster maps (topographic indexes, land cover, geology, vegetation indexes, night lights images and earth quake magnitudes) were used to improve the predictions. These were first converted to 36 principal components and then used to explain spatial distribution of heavy metals. The study revealed that this database is suitable for geostatistical analyses: the predictors explained from 21% (Cr) to 35% (Pb) of variability: the residuals showed spatial autocorrelation. The Principal Component Analysis of the mapped heavy metals revealed that the administrative units (NUTS level3) with highest overall concentrations are: (1) Liege (Arrondissement) (BE), Attiki (GR), Darlington (UK), Coventry (UK), Sunderland (UK), Kozani (GR), Grevena (GR), Hartlepool & Stockton (UK), Huy (BE), Aachen (DE) (As. Cd, Hg and Pb) and (2) central Greece and Liguria region in Italy (Cr, Cu and Nil. The evaluation of the mapping accuracy showed that the RK models for As, Ni and Pb can be considered satisfactory (prediction accuracy 45-52% of total variance), marginally satisfactory for Cr, Cu, Hg and Zn (36-41%), while the model for Cd is unsatisfactorily accurate (30%). The critical elements limiting the mapping accuracy are: (a) the problem of sporadic high values (hot-spots); and (b) relatively coarse resolution of the input maps. Automation of the geostatistical mapping and use of auxiliary spatial layers opens a possibility to develop mapping systems that can automatically update outputs by including new field observations and higher quality auxiliary maps. This approach also demonstrates the benefits of organizing standardized joint European monitoring projects, in comparison to the merging of several national monitoring projects. (C) 2008 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据