4.7 Article

High cesium concentrations in groundwater in the upper 1.2 km of fractured crystalline rock - Influence of groundwater origin and secondary minerals

期刊

GEOCHIMICA ET COSMOCHIMICA ACTA
卷 132, 期 -, 页码 187-213

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.gca.2014.02.001

关键词

-

资金

  1. Swedish Nuclear Fuel and Waste Management Company (SKB), Stockholm

向作者/读者索取更多资源

Dissolved and solid phase cesium (Cs) was studied in the upper 1.2 km of a coastal granitoid fracture network on the Baltic Shield (Aspo Hard Rock Laboratory and Laxemar area, SE Sweden). There unusually high Cs concentrations (up to 5-6 mu g L-1) occur in the low-temperature (<20 degrees C) groundwater. The material includes water collected in earlier hydro-chemical monitoring programs and secondary precipitates (fracture coatings) collected on the fracture walls, as follows: (a) hydraulically pristine fracture groundwater sampled through 23 surface boreholes equipped for the retrieval of representative groundwater at controlled depths (Laxemar area), (b) fracture groundwater affected by artificial drainage collected through 80 boreholes drilled mostly along the Aspo Hard Rock Laboratory (underground research facility), (c) surface water collected in local streams, a lake and sea bay, and shallow groundwater collected in 8 regolith boreholes, and (d) 84 new specimens of fracture coatings sampled in cores from the Aspo HRL and Laxemar areas. The groundwater in each area is different, which affects Cs concentrations. The highest Cs concentrations occurred in deep-seated saline groundwater (median Aspo HRL: 4.1 mu g L-1; median Laxemar: 3.7 mu g L-1) and groundwater with marine origin (Aspo HRL: 4.2 mu g L-1). Overall lower, but variable, Cs concentrations were found in other types of groundwater. The similar concentrations of Cs in the saline groundwater, which had a residence time in the order of millions of years, and in the marine groundwater, which had residence times in the order of years, shows that duration of water-rock interactions is not the single and primary control of dissolved Cs in these systems. The high Cs concentrations in the saline groundwater is ascribed to long-term weathering of minerals, primarily Cs-enriched fracture coatings dominated by illite and mixed-layer clays and possibly wall rock micaceous minerals. The high Cs concentrations in the groundwater of marine origin are, in contrast, explained by relatively fast cation exchange reactions. As indicated by the field data and predicted by 1D solute transport modeling, alkali cations with low-energy hydration carried by intruding marine water are capable of (NH4+ in particular and K+ to some extent) replacing Cs+ on frayed edge (FES) sites on illite in the fracture coatings. The result is a rapid and persistent (at least in the order of decades) buildup of dissolved Cs concentrations in fractures where marine water flows downward. The identification of high Cs concentrations in young groundwater of marine origin and the predicted capacity of NH4+ to displace Cs from fracture solids are of particular relevance in the disposal of radioactive nuclear waste deep underground in crystalline rock. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据