4.7 Article

Biogeochemistry of dissolved organic matter in an anoxic intertidal creek bank

期刊

GEOCHIMICA ET COSMOCHIMICA ACTA
卷 140, 期 -, 页码 418-434

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.gca.2014.05.038

关键词

-

资金

  1. Max Planck Society

向作者/读者索取更多资源

Seawater circulation in permeable coastal sediments is driven by tidal changes in hydraulic gradients. The resulting submarine groundwater discharge is a source of nutrients and dissolved organic matter (DOM) to the water column. Yet, little is known about the cycling of DOM within tidal sediments, because the molecular DOM characterization remains analytically challenging. One technique that can dissect the multitude of molecules in DOM is ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). To aim at a high resolution DOM analysis we study the seasonal turnover and marine and terrestrial sources of DOM in an intertidal creek bank of the southern North Sea down to 3 m depth and link the biogeochemical processes to FT-ICR-MS data and the analyses of inorganic porewater chemistry, delta C-13 of solid-phase extracted dissolved organic carbon (SPE-DOC), dissolved black carbon (DBC) and dissolved carbohydrates (DCHO). Increasing concentrations of dissolved Fe, Mn, P, total alkalinity, dissolved nitrogen, DOC and a concomitant decrease of sulfate along the seawater circulation path from the upper tidal flat to the tidal flat margin indicate continuous microbial activity. The relative increase of Si concentrations, unsaturated aliphatics, peptide molecular formulae and isotopically more C-13-enriched SPE-DOC towards the tidal flat margin suggests that remineralization processes mobilize DOM from buried algal (diatoms) and microbial biomass. Porewater in sediments <100 cm depth contains C-13-depleted SPE-DOC and highly unsaturated compounds which are probably derived from eroded peats, suggesting rapid removal of bioavailable marine DOM such as DCHO from the water column and selective enrichment of terrestrial DOM. DBC concentrations are highest in the discharging porewater close to the tidal creek suggesting that the intertidal flat is an important DBC source to the coastal ocean. Porewater DOM accumulating at the low water line is enriched in N and S. We hypothesize that this is partly due to DOM reacting with dissolved sulfide and ammonium which may increase the refractory character of the DOM, hence making it less bioavailable for in situ active microbes. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据