4.7 Article

Natural organobromine in terrestrial ecosystems

期刊

GEOCHIMICA ET COSMOCHIMICA ACTA
卷 77, 期 -, 页码 1-10

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.gca.2011.11.012

关键词

-

资金

  1. U.S. Department of Energy, Office of Basic Energy Sciences (DOE-BES)
  2. National Science Foundation (NSF)
  3. DOE-BES Materials Sciences Division [DE-AC03-76SF00098]
  4. DOE-BES

向作者/读者索取更多资源

Recent studies have shown that bromine undergoes biogeochemical cycling involving natural formation and degradation of organobromine compounds in marine systems. In the terrestrial environment, where background bromine levels tend to be low, the biogeochemistry of this element remains largely unexamined. We traced the path of bromine through plant growth, senescence, and decay of leaf litter on the forest floor. Using sensitive X-ray spectroscopic techniques, we show that all bromine in humified plant material, organic-rich surface soils, and isolated humic substances is bonded to carbon. Analysis of bromide-enriched plants suggests that bromide absorbed by the growing plants ultimately converts to organobromine when the plant litter decays. Application of isolated chloroperoxidase, a halogenating enzyme, to healthy plant material results in extensive bromination, with organobromine formed preferentially over organochlorine. The relative ease of bromide oxidation appears to promote biogeochemical transformations of Br from inorganic to organic forms, leading to its incorporation into soil organic matter through enzymatic processes related to plant litter decomposition. In combination with low concentration and susceptibility to leaching and plant uptake, natural bromination processes lead to the exhaustion of inorganic bromide in surface soils, making organic matter a reservoir of bromine in the terrestrial environment. This study provides the first detailed look into the terrestrial bromine cycle and lays the foundation for future studies of natural organobromine degradation, which may shed light on the fate of anthropogenic organobromine pollutants in the soil environment. (C) 2011 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据