4.7 Article

Chromite symplectites in Mg-suite troctolite 76535 as evidence for infiltration metasomatism of a lunar layered intrusion

期刊

GEOCHIMICA ET COSMOCHIMICA ACTA
卷 87, 期 -, 页码 154-177

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.gca.2012.03.030

关键词

-

资金

  1. NASA [NNX10AI77G, NNX11AG76G]
  2. New Mexico Space Grant Consortium
  3. NASA [132119, NNX10AI77G] Funding Source: Federal RePORTER

向作者/读者索取更多资源

Despite the very low chromium concentrations in its cumulus olivine (similar to 140 ppm), lunar troctolite 76535 contains large amounts of Cr sporadically, but highly concentrated, in symplectite assemblages consisting of Mg-Al-chromite and two pyroxenes. Previously proposed symplectite formation mechanisms include crystallization of trapped interstitial melt, diffusion of Cr from cumulus olivine, and/or remobilization of cumulus chromite grains. These mechanisms would imply that the highly Cr-depleted nature of Mg-suite parental magmas and their source materials inferred from cumulus olivine may be illusory. We have conducted a detailed petrologic and textural study of symplectites, as well as chromite veins, intercumulus assemblages, olivine-hosted melt inclusions and clinopyroxene-troilite veins in 76535 with the goals of constraining the origin of the symplectites, and the degree of Cr-depletion in Mg-suite magmas relative to other lunar basalts. Orthopyroxene and clinopyroxene in melt inclusions are depleted in Cr relative to their symplectite counterparts, averaging 900 and 1200 ppm vs. 7400 and 8100 ppm Cr2O3, respectively. Olivine in contact with symplectite assemblages may exhibit a diffusion profile of Cr going into olivine, whereas olivine boundaries away from symplectites show no diffusion profile. There is also a distinct lack of primary chromite as inclusions in cumulus phases and melt inclusions. Multiple textural observations, melt inclusion chemistry, and modeling of chromite-olivine equilibrium rule out previously proposed symplectite formation mechanisms, and strongly suggest that chromite was not a primary crystallization product of the 76535 parental magma. Accordingly, the post-cumulus addition of Cr and Fe is required to produce the symplectites. After considering multiple models, the addition of Cr and Fe to 76535 via infiltration metasomatism by an exogenous chromite-saturated melt is the model most consistent with multiple textural and geochemical observations. Failure of models that call upon Cr diffusion out of olivine grains imply that the observed Cr-depleted nature of olivine observed in many Mg-suite lithologies is a primary feature of the Cr-depleted nature of the Mg-suite parental magmas and their source materials. This substantial depletion of Cr in the magma relative to mare basalt magmas still requires a satisfactory explanation in order to be consistent with Mg-suite petrogenetic models and currently accepted bulk-Moon compositions. Additionally, if the intimate interaction of migrating melts with early lunar crustal lithologies was a widespread phenomenon after LMO solidification, it provides another mechanism by which to reset or delay closure of radiogenic isotopic systems and explain the Mg-suite-ferroan anorthosite age overlap. (C) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据