4.7 Article

Ni speciation in a New Caledonian lateritic regolith: A quantitative X-ray absorption spectroscopy investigation

期刊

GEOCHIMICA ET COSMOCHIMICA ACTA
卷 95, 期 -, 页码 119-133

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.gca.2012.07.030

关键词

-

资金

  1. CNRT (French National Centre for Technological Research) Nickel and its environment

向作者/读者索取更多资源

Changes in Ni speciation in a 64 m vertical profile of a New Caledonian saprolitic-lateritic regolith developed over ultra-mafic rocks under tropical weathering conditions were investigated by EXAFS spectroscopy. Quantitative analysis of the EXAFS spectra by linear combination-least squares fitting (LC-LSF) using a large set of model compound spectra showed that Ni hosted in primary silicate minerals (olivine and serpentine) in the bedrock is incorporated in secondary phyllosilicates (serpentine) and Fe-oxides (goethite) in the saprolite unit and mainly in goethite in the laterite unit. A significant concentration of Ni (up to 30% of total Ni) is also hosted by Mn-oxides in the transition laterite (i.e. the lowest part of the laterite unit which contains large amounts of Mn-oxides). However, the amount of Ni associated with Mn-oxides does not exceed 20% of the total Ni in the overlying laterite unit. This sequence of Ni species from bedrock to laterite yields information about the behavior of Ni during tropical weathering of ultramafic rocks. The different Ni distributions in phyllosilicates in the bedrock (randomly distributed) and in the saprolite unit (clustered) indicate two generations of Ni-bearing phyllosilicates. The first, which formed at higher temperature, is related to serpentinization of oceanic crust, whereas the second one, which formed at lower temperature, is associated with post-obduction weathering of ultramafic rocks. In addition, the observed decrease in the proportion of Ni hosted by Mn-oxides from the transition laterite to the upper lateritic horizons indicates dissolution of Mn-oxides during the last stages of differentiation of the lateritic regolith (i.e. lateritization). Finally, the ubiquitous occurrence of Ni-bearing goethite emphasizes the major role of this phase in Ni speciation at the different weathering stages and suggests that goethite represents the major host for Ni in the final tropical weathering stages of New Caledonian ultramafic rocks. (C) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据