4.7 Article

Diversity of Mn oxides produced by Mn(II)-oxidizing fungi

期刊

GEOCHIMICA ET COSMOCHIMICA ACTA
卷 75, 期 10, 页码 2762-2776

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.gca.2011.02.022

关键词

-

资金

  1. Department of Energy, Office of Biological and Environmental Research
  2. National Institutes of Health, National Center for Research Resources
  3. National Science Foundation [ECS-0335765, EAR-0846715]
  4. Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory
  5. Division Of Earth Sciences
  6. Directorate For Geosciences [0846715] Funding Source: National Science Foundation

向作者/读者索取更多资源

Manganese (Mn) oxides are environmentally abundant, highly reactive mineral phases that mediate the biogeochemical cycling of nutrients, contaminants, carbon, and numerous other elements. Despite the belief that microorganisms (specifically bacteria and fungi) are responsible for the majority of Mn oxide formation in the environment, the impact of microbial species, physiology, and growth stage on Mn oxide formation is largely unresolved. Here, we couple microscopic and spectroscopic techniques to characterize the Mn oxides produced by four different species of Mn(II)-oxidizing Ascomycete fungi (Plectosphaerella cucumerina strain DS2psM2a2, Pyrenochaeta sp. DS3sAY3a, Stagonospora sp. SRC1lsM3a, and Acremonium strictum strain DS1bioAY4a) isolated from acid mine drainage treatment systems in central Pennsylvania. The site of Mn oxide formation varies greatly among the fungi, including deposition on hyphal surfaces, at the base of reproductive structures (e. g., fruiting bodies), and on envisaged extracellular polymers adjacent to the cell. The primary product of Mn(II) oxidation for all species growing under the same chemical and physical conditions is a nanoparticulate, poorly-crystalline hexagonal birnessite-like phase resembling synthetic delta-MnO2. The phylogeny and growth conditions (planktonic versus surface-attached) of the fungi, however, impact the conversion of the initial phyllomanganate to more ordered phases, such as todorokite (A. strictum strain DS1bioAY4a) and triclinic birnessite (Stagonospora sp. SRC1lsM3a). Our findings reveal that the species of Mn(II)-oxidizing fungi impacts the size, morphology, and structure of Mn biooxides, which will likely translate to large differences in the reactivity of the Mn oxide phases. (C) 2011 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据