4.7 Article

Weak coupling between sulfate reduction and the anaerobic oxidation of methane in methane-rich seafloor sediments during ex situ incubation

期刊

GEOCHIMICA ET COSMOCHIMICA ACTA
卷 75, 期 2, 页码 500-519

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.gca.2010.09.043

关键词

-

资金

  1. NOAA National Institute for Undersea Science and Technology [06-09-018, 07-10-028, 08-10-031]

向作者/读者索取更多资源

We investigated coupling between sulfate reduction (SR) and anaerobic oxidation of methane (AOM) by quantifying pore water geochemical profiles, determining rates of microbial processes, and examining microbial community structure at two sites within Mississippi Canyon lease block 118 (MC118) in the Northern Gulf of Mexico. Sediments from the northwest seep contained high concentrations of methane while sediments from the southwest seep contained methane, gaseous n-alkanes and liquid hydrocarbons and had abundant surficial accumulations of gas hydrate. Volumetric (21.5 mu mol cm(-3) day(-1)) and integrated (1429 mmol m(-2) day(-1)) rates of SR at MC118 in ex situ incubations are the highest reported thus far for seafloor environments. AOM rates were small in comparison, with volumetric rates ranging from 0.1 to 12.6 nmol cm(-3) day(-1). Diffusion cannot adequately supply the sulfate required to support these high SR rates so additional mechanisms, possibly biological sulfide oxidation and/or downward advection, play important roles in supplying sulfate at these sites. The microbial communities at MC118 included sulfate-reducing bacteria phylogenetically associated with Desulfobacterium anilini, which is capable of complex hydrocarbon degradation. Despite low AOM rates, the majority of archaea identified were phylogenetically related to previously described methane oxidizing archaea. To evaluate whether weak coupling between SR and AOM occurs in habitats lacking the complex hydrocarbon milieu present at MC 118, we compiled available SR and AOM rates and found that the global median ratio of SR to AOM was 10.7:1 rather than the expected 1:1. The global median integrated AOM rate was used to refine global estimates for AOM rates at cold seeps; these new estimates are only 5% of the previous estimate. (C) 2010 Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据