4.3 Article

Human optokinetic nystagmus and spatial frequency

期刊

JOURNAL OF VISION
卷 15, 期 13, 页码 -

出版社

ASSOC RESEARCH VISION OPHTHALMOLOGY INC
DOI: 10.1167/15.13.7

关键词

optokinetic nystagmus; spatial frequency; Markov process; retinal gain; extraretinal gain

资金

  1. Engineering and Physical Sciences Research Council [DTG: EP/P502675/1]
  2. UK Technology Strategy Board
  3. Medical Research Council
  4. WESC Foundation [KTP008989]

向作者/读者索取更多资源

Optokinetic nystagmus (OKN) is a fundamental oculomotor response to retinal slip generated during natural movement through the environment. The timing and amplitude of the compensatory slow phases (SPs) alternating with saccadic quick phases (QPs) are remarkably variable, producing a characteristic irregular sawtooth waveform. We have previously found three stochastic processes that underlie OKN: the processes that determine QP and SP amplitude and the update dynamics of SP velocity. SP and QP parameters are interrelated and dependent on SP velocity such that changes in stimulus speed can have a seemingly complex effect on the nystagmus waveform. In this study we investigated the effect of stimulus spatial frequency on the stochastic processes of OKN. We found that increasing the spatial frequency of suprathreshold stimuli resulted in a significant increase in SP velocity with a corresponding reduction in retinal slip. However, retinal slip rarely reached values close to 0, indicating that the OKN system does not or cannot always minimize retinal slip. We deduce that OKN gain must be less than unity if extraretinal gain is lower than unity (as empirically observed), and that the difference between retinal and extraretinal gain determines the Markov properties of SP velocity. As retinal gain is reduced with stimuli of lower spatial frequency, the difference between retinal and extraretinal gain increases and the Markov properties of the system can be observed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据