4.5 Article

Modeling ash fall distribution from a Yellowstone supereruption

期刊

GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS
卷 15, 期 8, 页码 3459-3475

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1002/2014GC005469

关键词

supereruption; ashfall; umbrella cloud; hazards; Yellowstone

资金

  1. NSF [EAR1250029]
  2. Division Of Earth Sciences
  3. Directorate For Geosciences [1250029] Funding Source: National Science Foundation

向作者/读者索取更多资源

We used the volcanic ash transport and dispersion model Ash3d to estimate the distribution of ashfall that would result from a modern-day Plinian supereruption at Yellowstone volcano. The simulations required modifying Ash3d to consider growth of a continent-scale umbrella cloud and its interaction with ambient wind fields. We simulated eruptions lasting 3 days, 1 week, and 1 month, each producing 330 km(3) of volcanic ash, dense-rock equivalent (DRE). Results demonstrate that radial expansion of the umbrella cloud is capable of driving ash upwind (westward) and crosswind (N-S) in excess of 1500 km, producing more-or-less radially symmetric isopachs that are only secondarily modified by ambient wind. Deposit thicknesses are decimeters to meters in the northern Rocky Mountains, centimeters to decimeters in the northern Midwest, and millimeters to centimeters on the East, West, and Gulf Coasts. Umbrella cloud growth may explain the extremely widespread dispersal of the approximate to 640 ka and 2.1 Ma Yellowstone tephra deposits in the eastern Pacific, northeastern California, southern California, and South Texas.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据