4.5 Article

Frequency-dependent noise sources in the North Atlantic Ocean

期刊

GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS
卷 14, 期 12, 页码 5341-5353

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1002/2013GC004905

关键词

noise sources; secondary microseism; North Atlantic Ocean; polarization

资金

  1. projects Rifsis [CGL 2009-09727]
  2. TopoIberia [CSD2006-00041]

向作者/读者索取更多资源

Secondary microseisms are the most energetic waves in the noise spectra between 3 and 10 s. They are generated by ocean wave interactions and are predominantly Rayleigh waves. We study the associated noise sources in the North Atlantic Ocean by coupling noise polarization analysis and source mapping using an ocean wave model that takes into account coastal reflections. From the Rayleigh wave polarization analysis, we retrieve the back azimuth to the noise sources in the time-frequency domain. Noise source modeling enables us to locate the associated generation areas at different times and frequencies. We analyze the distribution of secondary microseism sources in the North Atlantic Ocean using 20 broadband stations located in the Arctic and around the ocean. To model the noise sources we adjust empirically the ocean wave coastal reflection coefficient as a function of frequency. We find that coastal reflections must be taken into account for accurately modeling 7-10 s noise sources. These reflections can be neglected in the noise modeling for periods shorter than 7 s. We find a strong variability of back azimuths and source locations as a function of frequency. This variability is largely related to the local bathymetry. One direct cause of the time-dependent and frequency-dependent noise sources is the presence of sea-ice that affects the amplitude and polarization of microseisms at stations in the Arctic only at periods shorter than 4 s.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据