4.5 Article

Polarized Earth's ambient microseismic noise

期刊

GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS
卷 12, 期 -, 页码 -

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2011GC003661

关键词

microseismic noise; polarization; primary and secondary microseisms; seismology

资金

  1. GEOSCOPE, IPG-Paris [CSD2006-00041, PII200830I202, ILink2010-0112, CGL2009-09727]

向作者/读者索取更多资源

We quantify, analyze, and characterize the frequency-dependent microseismic noise recorded by worldwide distributed seismic stations. Microseismic noise is generated through the interaction of ocean waves. It is the strongest ambient noise, and it is observed everywhere on Earth. We introduce a new approach which permits us to detect polarized signals in the time-frequency domain and which we use to characterize the microseismic noise. We analyze 7 years of continuous seismograms from the global GEOSCOPE network. Microseisms are dominated by Rayleigh waves, and we therefore focus on elliptically polarized signals. The polarized signals are detected in the time-frequency domain through a degree of polarization measure. We design polarization spectra and show that microseismic noise is more strongly polarized than noise in other frequency bands. This property is used to measure the directions of the polarized noise at individual stations as a function of time and frequency. Seasonal variations are found for the back azimuths and for the number of polarized signals at many stations. We show that the back azimuth directions are robust measurements that point toward the source areas computed from ocean wave models.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据