4.5 Article

Seismic triggering of landslides and turbidity currents offshore Portugal

期刊

GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS
卷 12, 期 -, 页码 -

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2011GC003839

关键词

palaeoseismicity; submarine canyon; turbidites

资金

  1. HERMES
  2. HERMIONE
  3. European Commission (EU) [GOCE-CT-2005-511234, 226354]
  4. UK Natural Environment Research Council [1190.1006, 1098.1004]
  5. NERC [noc010011, bosc01001] Funding Source: UKRI
  6. Natural Environment Research Council [bosc01001, noc010011] Funding Source: researchfish

向作者/读者索取更多资源

Sediments in deep water basins often include turbidites that record sediment input from adjacent continental margins. In seismically active areas, where turbidity currents are triggered by earthquakes, the basinal turbidite sequence may thus contain a record of palaeoseismicity, which can be used to infer the frequency of earthquakes affecting the margins of the basin. This is particularly useful where large earthquakes have a recurrence interval than is greater than the historical record. However, turbidity currents can be triggered by several processes, and it is often difficult to trace individual turbidites to their precise source areas and to assign a definite trigger to a particular turbidite. Here, we demonstrate that turbidites emplaced at similar to 6600 and similar to 8300 Cal yr BP in the Tagus Abyssal Plain, off Portugal, correlate with erosional hiatuses in two submarine canyons on the continental margin. The turbidites are sourced from simultaneous landsliding in both canyons, requiring regional triggers interpreted as earthquakes. An earthquake recurrence interval for the continental margin of similar to 4000 years is estimated by extrapolation to deeper turbidites in the basin sequence. However, the example of the 1755 earthquake, which caused widespread devastation in southwest Iberia, shows that palaeoseismic interpretations must be made with caution. The 1755 earthquake had a magnitude >8.5 and yet the associated turbidite in the abyssal plain is typically similar to 5 cm thick, while older turbidites can be >1 m thick. Given the large 1755 earthquake magnitude, the difference in turbidite thickness is unlikely to be related to the relative size of triggering earthquakes. Instead, we suggest that the offshore location of the 1755 earthquake, coupled with low sedimentation rates during the Holocene, may have limited the size of the associated turbidite.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据