4.5 Article

Geochemistry of oceanic anoxic events

期刊

GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS
卷 11, 期 -, 页码 -

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2009GC002788

关键词

geochemistry

向作者/读者索取更多资源

Oceanic anoxic events (OAEs) record profound changes in the climatic and paleoceanographic state of the planet and represent major disturbances in the global carbon cycle. OAEs that manifestly caused major chemical change in the Mesozoic Ocean include those of the early Toarcian (Posidonienschiefer event, T-OAE, similar to 183 Ma), early Aptian (Selli event, OAE 1a, similar to 120 Ma), early Albian (Paquier event, OAE 1b, similar to 111 Ma), and Cenomanian-Turonian (Bonarelli event, C/T OAE, OAE 2, similar to 93 Ma). Currently available data suggest that the major forcing function behind OAEs was an abrupt rise in temperature, induced by rapid influx of CO2 into the atmosphere from volcanogenic and/or methanogenic sources. Global warming was accompanied by an accelerated hydrological cycle, increased continental weathering, enhanced nutrient discharge to oceans and lakes, intensified upwelling, and an increase in organic productivity. An increase in continental weathering is typically recorded by transient increases in the seawater values of Sr-87/Sr-86 and Os-187/Os-188 ratios acting against, in the case of the Cenomanian-Turonian and early Aptian OAEs, a longer-term trend to less radiogenic values. This latter trend indicates that hydrothermally and volcanically sourced nutrients may also have stimulated local increases in organic productivity. Increased flux of organic matter favored intense oxygen demand in the water column, as well as increased rates of marine and lacustrine carbon burial. Particularly in those restricted oceans and seaways where density stratification was favored by paleogeography and significant fluvial input, conditions could readily evolve from poorly oxygenated to anoxic and ultimately euxinic (i.e., sulfidic), this latter state being geochemically the most significant. The progressive evolution in redox conditions through phases of denitrification/anammox, through to sulfate reduction accompanied by water column precipitation of pyrite framboids, resulted in fractionation of many isotope systems (e.g., N, S, Fe, Mo, and U) and mobilization and incorporation of certain trace elements into carbonates (Mn), sulfides, and organic matter. Sequestration of CO2 in organic-rich black shales and by reaction with silicate rocks exposed on continents would ultimately restore climatic equilibrium but at the expense of massive chemical change in the oceans and over time scales of tens to hundreds of thousands of years.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据