4.5 Article

Petrogenesis of crustal wehrlites in the Oman ophiolite: Experiments and natural rocks

期刊

GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS
卷 10, 期 -, 页码 -

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2009GC002488

关键词

wehrlites; Oman ophiolite; oceanic crust; experimental petrology; hydrous magmatism

资金

  1. Universities of Hannover and Montpellier
  2. German DAAD
  3. French EGIDE
  4. Ministry of Commerce and Industry
  5. Deutsche Forschungsgemeinschaft [KO 1723/4, KO 1723/6]

向作者/读者索取更多资源

In the Wadi Haymiliyah of the Oman ophiolite (Haylayn block), discordant wehrlite bodies ranging in size from tens to hundreds of meters intrude the lower crust at different levels. We combined investigations on natural wehrlites from the Wadi Haymiliyah section with an experimental study on the phase relations in a wehrlitic system in order to constrain the petrogenesis of the crustal wehrlites of the Oman ophiolite. Secondary ion mass spectrometry analyses of clinopyroxenes from different wehrlite bodies imply that the clinopyroxenes were crystallized from tholeiitic, mid-ocean ridge (MORB)-type melts. The presence of primary magmatic amphiboles in some wehrlites suggests a formation under hydrous conditions. Significantly enhanced Sr-87/Sr-86 isotope ratios of separates from these amphiboles imply that the source of the corresponding magmatic fluids was either seawater or subduction zone-related. The experiments revealed that under wet conditions at relatively low temperatures, a MORB magma has the potential to produce wehrlite in the ocean crust by accumulation of early olivine and clinopyroxene. These show typically high Mg# which is a consequence of the oxidizing effect of the prevailing high aH(2)O. First plagioclases crystallizing after clinopyroxene under wet conditions are high in An content, in contrast to the corresponding dry system. Trace element compositions of clinopyroxenes of those wehrlites from the Moho transition zone are too depleted in HREE to be in equilibrium with present-day MORB, implying a genetic relation to the V2 lavas of the Oman ophiolite, which are interpreted to be the result of fluid-enhanced melting of previously depleted mantle. We present a model on the petrogenesis of the crustal wehrlites in an upper mantle wedge above an initial, shallow subduction zone at the beginning of the intraoceanic thrusting.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据