4.7 Article

Natural variation in four human collagen genes across an ethnically diverse population

期刊

GENOMICS
卷 91, 期 4, 页码 307-314

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ygeno.2007.12.008

关键词

COL1A1; COL1A2; COL2A1; COL3A1; polymorphisms; phylogenetics; osteogenesis imperfecta

资金

  1. NIAMS NIH HHS [AR051582, R01 AR051582, R01 AR047720-04] Funding Source: Medline
  2. NIGMS NIH HHS [R24 GM061374, GM61374, U01 GM061374] Funding Source: Medline

向作者/读者索取更多资源

Collagens are members of one of the most important families of structural proteins in higher organisms. There are 28 types of collagens encoded by 43 genes in humans that fall into several different functional protein classes. Mutations in the major fibrillar collagen genes lead to osteogenesis imperfecta (COL1A1 and COL1A2 encoding the chains of Type I collagen), chondrodysplasias (COL2A1 encoding the chains of Type II collagen), and vascular Ehlers - Danlos syndrome (COL3A1 encoding the chains of Type III collagen). Over the past 2 decades, mutations in these collagen genes have been catalogued, in hopes of understanding the molecular etiology of diseases caused by these mutations, characterizing the genotype - phenotype relationships, and developing robust models predicting the molecular and clinical outcomes. To achieve these goals better, it is necessary to understand the natural patterns of variation in collagen genes in human populations. We screened exons, flanking intronic regions, and conserved noncoding regions for variations in COL1A1, COL1A2, COL2A1, and COL3A1 in 48 individuals from each of four ethnically diverse populations. We identified 459 single-nucleotide polymorphisms (SNPs), more than half of which were novel and not found in public databases. Of the 52 SNPs found in coding regions, 15 caused amino acid substitutions while 37 did not. Although the four collagens have similar gene and protein structures, they have different molecular evolutionary characteristics. For example, COL1A1 appears to have been under substantially stronger negative selection than the rest. Phylogenetic analysis also suggests that the four genes have very different evolutionary histories among the different ethnic groups. Our observations suggest that the study of collagen mutations and their relationships with disease phenotypes should be performed in the context of the genetic background of the subjects. (c) 2008 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据