4.7 Article

Tissue-specific SMARCA4 binding at active and repressed regulatory elements during embryogenesis

期刊

GENOME RESEARCH
卷 24, 期 6, 页码 920-929

出版社

COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT
DOI: 10.1101/gr.168930.113

关键词

-

资金

  1. National Human Genome Research Institute [HG003988, U54HG006997]
  2. Swiss National Science Foundation (SNSF) Advanced Researcher fellowship
  3. NIH/NIGMS NRSA F32 [GM105202]
  4. University of California [DE-AC02-05CH11231]

向作者/读者索取更多资源

The SMARCA4 (also known as BRG1 in humans) chromatin remodeling factor is critical for establishing lineage-specific chromatin states during early mammalian development. However, the role of SMARCA4 in tissue-specific gene regulation during embryogenesis remains poorly defined. To investigate the genome-wide binding landscape of SMARCA4 in differentiating tissues, we engineered a Smarca4 FLAG knock-in mouse line. Using ChIP-seq, we identified similar to 51,000 SMARCA4associated regions across six embryonic mouse tissues (forebrain, hindbrain, neural tube, heart, limb, and face) at midgestation (E11.5). The majority of these regions was distal from promoters and showed dynamic occupancy, with most distal SMARCA4 sites (73%) confined to a single or limited subset of tissues. To further characterize these regions, we profiled active and repressive histone marks in the same tissues and examined the intersection of informative chromatin states and SMARCA4 binding. This revealed distinct classes of distal SMARCA4-associated elements characterized by activating and repressive chromatin signatures that were associated with tissue-specific up-or down-regulation of gene expression and relevant active/repressed biological pathways. We further demonstrate the predicted active regulatory properties of SMARCA4associated elements by retrospective analysis of tissue-specific enhancers and direct testing of SMARCA4-bound regions in transgenic mouse assays. Our results indicate a dual active/repressive function of SMARCA4 at distal regulatory sequences in vivo and support its role in tissue-specific gene regulation during embryonic development.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据