4.7 Article

Efficient de novo assembly of large genomes using compressed data structures

期刊

GENOME RESEARCH
卷 22, 期 3, 页码 549-556

出版社

COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT
DOI: 10.1101/gr.126953.111

关键词

-

资金

  1. Wellcome Trust Sanger Institute
  2. Wellcome Trust [WT077192]

向作者/读者索取更多资源

De novo genome sequence assembly is important both to generate new sequence assemblies for previously uncharacterized genomes and to identify the genome sequence of individuals in a reference-unbiased way. We present memory efficient data structures and algorithms for assembly using the FM-index derived from the compressed Burrows-Wheeler transform, and a new assembler based on these called SGA (String Graph Assembler). We describe algorithms to error-correct, assemble, and scaffold large sets of sequence data. SGA uses the overlap-based string graph model of assembly, unlike most de novo assemblers that rely on de Bruijn graphs, and is simply parallelizable. We demonstrate the error correction and assembly performance of SGA on 1.2 billion sequence reads from a human genome, which we are able to assemble using 54 GB of memory. The resulting contigs are highly accurate and contiguous, while covering 95% of the reference genome (excluding contigs <200 bp in length). Because of the low memory requirements and parallelization without requiring inter-process communication, SGA provides the first practical assembler to our knowledge for a mammalian-sized genome on a low-end computing cluster.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据