4.5 Article

Ecology Drives the Distribution of Specialized Tyrosine Metabolism Modules in Fungi

期刊

GENOME BIOLOGY AND EVOLUTION
卷 6, 期 1, 页码 121-132

出版社

OXFORD UNIV PRESS
DOI: 10.1093/gbe/evt208

关键词

pathway evolution; phenolic compound; gene cluster; horizontal gene transfer

资金

  1. Vanderbilt Undergraduate Summer Research Program Fellowship
  2. National Science Foundation [DBI-0805625, DEB-0844968]
  3. Direct For Biological Sciences
  4. Division Of Environmental Biology [0844968] Funding Source: National Science Foundation

向作者/读者索取更多资源

Gene clusters encoding accessory or environmentally specialized metabolic pathways likely play a significant role in the evolution of fungal genomes. Two such gene clusters encoding enzymes associated with the tyrosine metabolism pathway (KEGG #00350) have been identified in the filamentous fungus Aspergillus fumigatus. The l-tyrosine degradation (TD) gene cluster encodes a functional module that facilitates breakdown of the phenolic amino acid, l-tyrosine through a homogentisate intermediate, but is also involved in the production of pyomelanin, a fungal pathogenicity factor. The gentisate catabolism (GC) gene cluster encodes a functional module likely involved in phenolic compound degradation, which may enable metabolism of biphenolic stilbenes in multiple lineages. Our investigation of the evolution of the TD and GC gene clusters in 214 fungal genomes revealed spotty distributions partially shaped by gene cluster loss and horizontal gene transfer (HGT). Specifically, a TD gene cluster shows evidence of HGT between the extremophilic, melanized fungi Exophiala dermatitidis and Baudoinia compniacensis, and a GC gene cluster shows evidence of HGT between Sordariomycete and Dothideomycete grass pathogens. These results suggest that the distribution of specialized tyrosine metabolism modules is influenced by both the ecology and phylogeny of fungal species.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据