4.5 Article

Characterization of Genomic Regulatory Domains Conserved across the Genus Drosophila

期刊

GENOME BIOLOGY AND EVOLUTION
卷 4, 期 10, 页码 1054-1060

出版社

OXFORD UNIV PRESS
DOI: 10.1093/gbe/evs089

关键词

genome organization; microsynteny; functional constraints; HCNEs; Drosophila

资金

  1. National Science Foundation [MCB-1157876]
  2. National Institute of Health [R25-GM056647]
  3. Direct For Biological Sciences
  4. Div Of Molecular and Cellular Bioscience [1157876] Funding Source: National Science Foundation

向作者/读者索取更多资源

In both vertebrates and insects, the conservation of local gene order among distantly related species (microsynteny) is higher than expected in the presence of highly conserved noncoding elements (HCNEs). Dense clusters of HCNEs, or HCNE peaks, have been proposed to mediate the regulation of sometimes distantly located genes, which are central for the developmental program of the organism. Thus, the regions encompassing HCNE peaks and their targets in different species would form genomic regulatory domains (GRDs), which should presumably enjoy an enhanced stability over evolutionary time. By leveraging genome rearrangement information from nine Drosophila species and using gene functional and phenotypic information, we performed a comprehensive characterization of the organization of microsynteny blocks harboring HCNE peaks and provide a functional portrait of the putative HCNE targets that reside therein. We found that Drosophila HCNE peaks tend to colocalize more often than expected and to be evenly distributed across chromosomal elements. Putative HCNE peak targets are characterized by a tight association with particular promoter motifs, higher incidence of severe mutant phenotypes, and evidence of a more precise regulation of gene expression during important developmental transitions. As for their physical organization, similar to 65% of these putative targets are separated by a median of two genes from their nearest HCNE peaks. These observations represent the first functional portrait of this euchromatic fraction of the Drosophila genome with distinctive evolutionary dynamics, which will facilitate future experimental studies on the interactions between HCNE peaks and their targets in a genetically tractable system such as Drosophila melanogaster.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据