4.5 Article

LTR Retrotransposons Contribute to Genomic Gigantism in Plethodontid Salamanders

期刊

GENOME BIOLOGY AND EVOLUTION
卷 4, 期 2, 页码 168-183

出版社

OXFORD UNIV PRESS
DOI: 10.1093/gbe/evr139

关键词

LTR retrotransposon; transposable element landscape; genomic expansion; TE age distributions; genome size evolution; plethodontid salamanders

资金

  1. National Science Foundation [NSF-DEB 1021489]
  2. Colorado State University
  3. National Institutes of Health [GM077582]
  4. NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES [R01GM077582] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Among vertebrates, most of the largest genomes are found within the salamanders, a clade of amphibians that includes 613 species. Salamander genome sizes range from similar to 14 to similar to 120 Gb. Because genome size is correlated with nucleus and cell sizes, as well as other traits, morphological evolution in salamanders has been profoundly affected by genomic gigantism. However, the molecular mechanisms driving genomic expansion in this clade remain largely unknown. Here, we present the first comparative analysis of transposable element (TE) content in salamanders. Using high-throughput sequencing, we generated genomic shotgun data for six species from the Plethodontidae, the largest family of salamanders. We then developed a pipeline to mine TE sequences from shotgun data in taxa with limited genomic resources, such as salamanders. Our summaries of overall TE abundance and diversity for each species demonstrate that TEs make up a substantial portion of salamander genomes, and that all of the major known types of TEs are represented in salamanders. The most abundant TE superfamilies found in the genomes of our six focal species are similar, despite substantial variation in genome size. However, our results demonstrate a major difference between salamanders and other vertebrates: salamander genomes contain much larger amounts of long terminal repeat (LTR) retrotransposons, primarily Ty3/gypsy elements. Thus, the extreme increase in genome size that occurred in salamanders was likely accompanied by a shift in TE landscape. These results suggest that increased proliferation of LTR retrotransposons was a major molecular mechanism contributing to genomic expansion in salamanders.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据