4.5 Article

Substitution Patterns Are Under Different Influences in Primates and Rodents

期刊

GENOME BIOLOGY AND EVOLUTION
卷 3, 期 -, 页码 236-245

出版社

OXFORD UNIV PRESS
DOI: 10.1093/gbe/evr011

关键词

genome evolution; isochore; substitution patterns; meiotic recombination; biased gene conversion

资金

  1. International Max Planck Research School for Computational Biology and Scientific Computing

向作者/读者索取更多资源

There are large-scale variations of the GC-content along mammalian chromosomes that have been called isochore structures. Primates and rodents have different isochore structures, which suggests that these lineages exhibit different modes of GC-content evolution. It has been shown that, in the human lineage, GC-biased gene conversion (gBGC), a neutral process associated with meiotic recombination, acts on GC-content evolution by influencing A or T to G or C substitution rates. We computed genome-wide substitution patterns in the mouse lineage from multiple alignments and compared them with substitution patterns in the human lineage. We found that in the mouse lineage, gBGC is active but weaker than in the human lineage and that male-specific recombination better predicts GC-content evolution than female-specific recombination. Furthermore, we were able to show that G or C to A or T substitution rates are predicted by a combination of different factors in both lineages. A or T to G or C substitution rates are most strongly predicted by meiotic recombination in the human lineage but by CpG odds ratio (the observed CpG frequency normalized by the expected CpG frequency) in the mouse lineage, suggesting that substitution patterns are under different influences in primates and rodents.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据