4.5 Article

Pigmentation Pathway Evolution after Whole-Genome Duplication in Fish

期刊

GENOME BIOLOGY AND EVOLUTION
卷 1, 期 -, 页码 479-493

出版社

OXFORD UNIV PRESS
DOI: 10.1093/gbe/evp050

关键词

genome duplication; fish; conserved synteny; pigment cell; melanocyte; functional module

资金

  1. German Science Foundation (DFG)
  2. Bundesministerium fur Bildung und Forschung (BMBF)
  3. Association pour la Recherche contre le Cancer (ARC)
  4. French Institute for Agronomy Research
  5. French Research Agency (ANR)
  6. Foundation pour la Recherche Medicale (FRM)

向作者/读者索取更多资源

Whole-genome duplications (WGDs) have occurred repeatedly in the vertebrate lineage, but their evolutionary significance for phenotypic evolution remains elusive. Here, we have investigated the impact of the fish-specific genome duplication (FSGD) on the evolution of pigmentation pathways in teleost fishes. Pigmentation and color patterning are among the most diverse traits in teleosts, and their pigmentary system is the most complex of all vertebrate groups. Using a comparative genomic approach including phylogenetic and synteny analyses, the evolution of 128 vertebrate pigmentation genes in five teleost genomes following the FSGD has been reconstructed. We show that pigmentation genes have been preferentially retained in duplicate after the FSGD, so that teleosts have 30% more pigmentation genes compared with tetrapods. This is significantly higher than genome-wide estimates of FSGD gene duplicate retention in teleosts. Large parts of the melanocyte regulatory network have been retained in two copies after the FSGD. Duplicated pigmentation genes follow general evolutionary patterns such as the preservation of protein complex stoichiometries and the overrepresentation of developmental genes among retained duplicates. These results suggest that the FSGD has made an important contribution to the evolution of teleost-specific features of pigmentation, which include novel pigment cell types or the division of existing pigment cell types into distinct subtypes. Furthermore, we have observed species-specific differences in duplicate retention and evolution that might contribute to pigmentary diversity among teleosts. Our study therefore strongly supports the hypothesis that WGDs have promoted the increase of complexity and diversity during vertebrate phenotypic evolution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据