4.4 Article

Epigenetic chromatin modifications in Brassica genomes

期刊

GENOME
卷 53, 期 3, 页码 203-210

出版社

CANADIAN SCIENCE PUBLISHING
DOI: 10.1139/G09-088

关键词

Brassica; histone methylation; DNA methylation; heterochromatin; euchromatin

资金

  1. Polish Ministry of Science and Higher Education [N302 002 32/0402]

向作者/读者索取更多资源

Epigenetic modifications such as histone and DNA methylation are highly conserved among cukaryotes, although the nuclear patterns of these modifications vary between different species. Brassica species represent a very attractive model for analysis of epigenetic changes because of their differences in genome size, ploidy level, and the organization of heterochromatin blocks. Brassica rapa and B. oleracea are diploid species, and B. napus is an allotetraploid species that arose from the hybridization of these two diploids. We found that patterns of DNA and histone H3 methylation differ between Brassica species. The most prominent differences concern the two diploids. DNA methylation was present exclusively in the heterochromatin only in B. rapa. In B. oleracea and B. napus this modification was detected in both euchromatin and heterochromatin. A similar pattern was observed for dimethylation of lysine 9. Dimethylation of lysine 4 is a typical marker of euchromatin in Brassica species. like it is in other plant species. We conclude that the diploid species differ in patterns of analyzed epigenetic modifications and the allotetraploid B. napus has combined patterns from both diploids. Differences in patterns of DNA and histone H3 methylation between Brassica species can be attributed mainly to the genome structure and heterochromatin localization rather than ploidy level.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据