4.4 Article

Genome-Wide Patterns of Differentiation Among House Mouse Subspecies

期刊

GENETICS
卷 198, 期 1, 页码 283-+

出版社

GENETICS SOCIETY AMERICA
DOI: 10.1534/genetics.114.166827

关键词

-

资金

  1. National Institutes of Health [R01 GM074245]
  2. National Science Foundation [ACI-1053575]

向作者/读者索取更多资源

One approach to understanding the genetic basis of speciation is to scan the genomes of recently diverged taxa to identify highly differentiated regions. The house mouse, Mus musculus, provides a useful system for the study of speciation. Three subspecies (M. m. castaneus, M. m. domesticus, and M. m. musculus) diverged similar to 350 KYA, are distributed parapatrically, show varying degrees of reproductive isolation in laboratory crosses, and hybridize in nature. We sequenced the testes transcriptomes of multiple wild-derived inbred lines from each subspecies to identify highly differentiated regions of the genome, to identify genes showing high expression divergence, and to compare patterns of differentiation among subspecies that have different demographic histories and exhibit different levels of reproductive isolation. Using a sliding-window approach, we found many genomic regions with high levels of sequence differentiation in each of the pairwise comparisons among subspecies. In all comparisons, the X chromosome was more highly differentiated than the autosomes. Sequence differentiation and expression divergence were greater in the M. m. domesticusM. m. musculus comparison than in either pairwise comparison with M. m. castaneus, which is consistent with laboratory crosses that show the greatest reproductive isolation between M. m. domesticus and M. m. musculus. Coalescent simulations suggest that differences in estimates of effective population size can account for many of the observed patterns. However, there was an excess of highly differentiated regions relative to simulated distributions under a wide range of demographic scenarios. Overlap of some highly differentiated regions with previous results from QTL mapping and hybrid zone studies points to promising candidate regions for reproductive isolation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据