4.4 Article

Coupling Unbiased Mutagenesis to High-throughput DNA Sequencing Uncovers Functional Domains in the Ndc80 Kinetochore Protein of Saccharomyces cerevisiae

期刊

GENETICS
卷 195, 期 1, 页码 159-+

出版社

GENETICS SOC AM
DOI: 10.1534/genetics.113.152728

关键词

-

资金

  1. National Sciences and Engineering Research Council of Canada
  2. National Institutes of Health [T32 GM008268, T32 GM007270]
  3. Searle Scholar Award Grant [06-L-111]
  4. Packard Fellowship for Science and Engineering Grant [2006-30521]
  5. National Center for Research Resources Grant [S10 RR26406]
  6. National Institute of General Medical Sciences [R01 GM40506, R01 GM079373, P41 GM103533]

向作者/读者索取更多资源

During mitosis, kinetochores physically link chromosomes to the dynamic ends of spindle microtubules. This linkage depends on the Ndc80 complex, a conserved and essential microtubule-binding component of the kinetochore. As a member of the complex, the Ndc80 protein forms microtubule attachments through a calponin homology domain. Ndc80 is also required for recruiting other components to the kinetochore and responding to mitotic regulatory signals. While the calponin homology domain has been the focus of biochemical and structural characterization, the function of the remainder of Ndc80 is poorly understood. Here, we utilized a new approach that couples high-throughput sequencing to a saturating linker-scanning mutagenesis screen in Saccharomyces cerevisiae. We identified domains in previously uncharacterized regions of Ndc80 that are essential for its function in vivo. We show that a helical hairpin adjacent to the calponin homology domain influences microtubule binding by the complex. Furthermore, a mutation in this hairpin abolishes the ability of the Dam1 complex to strengthen microtubule attachments made by the Ndc80 complex. Finally, we defined a C-terminal segment of Ndc80 required for tetramerization of the Ndc80 complex in vivo. This unbiased mutagenesis approach can be generally applied to genes in S. cerevisiae to identify functional properties and domains.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据