4.4 Article

Dysfunctional Mitochondria Modulate cAMP-PKA Signaling and Filamentous and Invasive Growth of Saccharomyces cerevisiae

期刊

GENETICS
卷 193, 期 2, 页码 467-481

出版社

GENETICS SOC AM
DOI: 10.1534/genetics.112.147389

关键词

-

资金

  1. Estonian Science Foundation [7013, 8845, 9210]

向作者/读者索取更多资源

Mitochondrial metabolism is targeted by conserved signaling pathways that mediate external information to the cell. However, less is known about whether mitochondrial dysfunction interferes with signaling and thereby modulates the cellular response to environmental changes. In this study, we analyzed defective filamentous and invasive growth of the yeast Saccharomyces cerevisiae strains that have a dysfunctional mitochondrial genome (rho mutants). We found that the morphogenetic defect of rho mutants was caused by specific downregulation of FLO11, the adhesin essential for invasive and filamentous growth, and did not result from general metabolic changes brought about by interorganellar retrograde signaling. Transcription of FLO11 is known to be regulated by several signaling pathways, including the filamentous-growth-specific MAPK and cAMP-activated protein kinase A (cAMP-PKA) pathways. Our analysis showed that the filamentous-growth-specific MAPK pathway retained functionality in respiratory-deficient yeast cells. In contrast, the cAMP-PKA pathway was downregulated, explaining also various phenotypic traits observed in rho mutants. Thus, our results indicate that dysfunctional mitochondria modulate the output of the conserved cAMP-PKA signaling pathway.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据