4.4 Article

Differentiation of Carbon Dioxide-Sensing Neurons in Caenorhabditis elegans Requires the ETS-5 Transcription Factor

期刊

GENETICS
卷 189, 期 4, 页码 1327-+

出版社

GENETICS SOCIETY AMERICA
DOI: 10.1534/genetics.111.133835

关键词

-

资金

  1. National Institutes of Health

向作者/读者索取更多资源

Many animals sense environmental gases such as carbon dioxide and oxygen using specialized populations of gas-sensing neurons. The proper development and function of these neurons is critical for survival, as the inability to respond to changes in ambient carbon dioxide and oxygen levels can result in reduced neural activity and ultimately death. Despite the importance of gas-sensing neurons for survival, little is known about the developmental programs that underlie their formation. Here we identify the ETS-family transcription factor ETS-5 as critical for the normal differentiation of the carbon dioxide-sensing BAG neurons in Caenorhabditis elegans. Whereas wild-type animals show acute behavioral avoidance of carbon dioxide, ets-5 mutant animals do not respond to carbon dioxide. The ets-5 gene is expressed in BAG neurons and is required for the normal expression of the BAG neuron gene battery. ets-5 may also autoregulate its expression in BAG neurons. ets-5 is not required for BAG neuron formation, indicating that it is specifically involved in BAG neuron differentiation and the maintenance of BAG neuron cell fate. Our results demonstrate a novel role for ETS genes in the development and function of gas-detecting sensory neurons.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据