4.4 Article

Stem and leaf rust resistance in wild relatives of wheat with D genome (Aegilops spp.)

期刊

GENETIC RESOURCES AND CROP EVOLUTION
卷 61, 期 4, 页码 861-874

出版社

SPRINGER
DOI: 10.1007/s10722-014-0085-6

关键词

Aegilops spp.; D genome; Leaf rust; Stem rust

资金

  1. National Initiative on Climate Resilient Agriculture (NICRA)

向作者/读者索取更多资源

Resistance to stem rust and leaf rust in five D genome species of wheat viz., 267 accessions of Aegilops tauschii Coss., 39 of Ae. cylindrica Host, 17 of Ae. ventricosa Tausch, 4 of Ae. crassa Boiss. and 8 of Ae. juvenalis (Thell.) Eig were evaluated at adult plant stage. Two hundred and thirty nine (90 %) accessions of Ae. tauschii, 30 (77 %) of Ae. cylindrica, 16 (94 %) of Ae. ventricosa, 3 (75 %) of Ae. crassa Boiss. and 5 (62.5 %) of Ae. juvenalis were resistant to stem rust pathotypes prevalent in South India at Wellington under field condition. Invariably, all the accessions of the five species were resistant to leaf rust pathotypes. Quantitative measurement of disease using area under the disease progress curve revealed the slow progress of disease in the resistant accessions compared to susceptible check (Agra Local). Since all the five species have D genome, it could be concluded that the genes present in D genome might play a vital role in leaf rust resistance, but in case of stem rust resistance wide range of differential response was noticed. Among the species evaluated, Ae. tauschii was exploited to a larger extent, followed by Ae. ventricosa and Ae. cylindrica for leaf and stem rust resistance because of the homology of D genome with hexaploid bread wheat. While, Ae. crassa and Ae. juvenalis could not be utilized so far, possibly due to partial homology which makes the transfer of traits difficult. So, these species have considerable potential as a source of rust resistance and may enhance the existing gene pool of resistance to stem and leaf rusts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据