4.0 Article

Spatio-Temporal Dynamics of Gene Expression of the Edn1-Dlx5/6 Pathway During Development of the Lower Jaw

期刊

GENESIS
卷 48, 期 6, 页码 362-373

出版社

WILEY-BLACKWELL
DOI: 10.1002/dvg.20625

关键词

endothelin-1; Dlx; craniofacial development; pharyngeal arches; allelic dosage; cranial neural crest cells; first arch syndromes

资金

  1. Telethon Foundation
  2. Cariplo and Compagnia di SanPaolo, Italy
  3. EU
  4. French Ministry of Research
  5. Fondation Recherche Medicale
  6. Minister della Sanita, Italy

向作者/读者索取更多资源

The morphogenesis of the vertebrate skull results from highly dynamic integrated processes involving the exchange of signals between the ectoderm, the endoderm, and cephalic neural crest cells (CNCCs). Before migration CNCCs are not committed to form any specific skull element, molecular signals exchanged in restricted regions of tissue interaction are crucial in providing positional identity to the CNCCs mesenchyme and activate the specific morphogenetic process of different skeletal components of the head. In particular, the endothelin-1 (Edn1)-dependent activation of Dlx5 and Dlx6 in CNCCs that colonize the first pharyngeal arch (PA1) is necessary and sufficient to specify maxillo-mandibular identity. Here, to better analyze the spatio-temporal dynamics of this process, we associate quantitative gene expression analysis with detailed examination of skeletal phenotypes resulting from combined allelic reduction of Edn1, Dlx5, and Dlx6. We show that Edn1-dependent and -independent regulatory pathways act at different developmental times in distinct regions of PA1. The Edn1 -> Dlx5/6 -> Hand2 pathway is already active at E9.5 during early stages of CNCCs colonization. At later stages (E10.5) the scenario is more complex: we propose a model in which PA1 is subdivided into four adjacent territories in which distinct regulations are taking place. This new developmental model may provide a conceptual framework to interpret the craniofacial malformations present in several mouse mutants and in human first arch syndromes. More in general, our findings emphasize the importance of quantitative gene expression in the fine control of morphogenetic events. genesis 48:362-373, 2010. (C) 2010 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据