4.2 Article

Non-centrosomal microtubules regulate F-actin organization through the suppression of GEF-H1 activity

期刊

GENES TO CELLS
卷 18, 期 5, 页码 387-396

出版社

WILEY-BLACKWELL
DOI: 10.1111/gtc.12044

关键词

-

资金

  1. Japan Society for Promotion of Science
  2. Ministry of Education, Science, Sports, and Culture of Japan
  3. Grants-in-Aid for Scientific Research [20002009] Funding Source: KAKEN

向作者/读者索取更多资源

Animal cells contain two populations of microtubules: one radiating from the centrosome and the other growing from non-centrosomal sites. Whether or not they have differing roles in cellular architecture and function remains not fully understood. The cytoplasmic protein Nezha (also known as CAMSAP3) stabilizes non-centrosomal microtubules by attaching to their minus ends. Here, we found that depletion of CAMSAP3 in HeLa cells resulted in a relative increase in centrosomal microtubules, and this change was accompanied by accelerated actin stress fiber formation. In these cells, RhoA activity was upregulated, and the soluble fraction of GEF-H1, a RhoGEF whose activity is inhibited by binding to microtubules, increased, explaining why stress fiber formation was promoted. We further found that CAMSAP3 depletion led to an increase in detyrosinated microtubules, and these microtubules did not interact with GEF-H1. These findings suggest that CAMSAP3-anchored non-centrosomal microtubules capture GEF-H1 more efficiently than other microtubules do and that a balance between these microtubules is important to maintain proper actin organization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据