4.2 Article

Ser386 phosphorylation of transcription factor IRF-3 induces dimerization and association with CBP/p300 without overall conformational change

期刊

GENES TO CELLS
卷 15, 期 8, 页码 901-910

出版社

WILEY
DOI: 10.1111/j.1365-2443.2010.01427.x

关键词

-

资金

  1. Japanese Ministry of Education, Culture, Sports, Science and Technology

向作者/读者索取更多资源

The transcription factor IRF-3 is activated by microbial invasions and produces a variety of cytokines including type-I interferon. Upon microbial infection, IRF-3 is phosphorylated at its C-terminal regulatory domain, then oligomerized, translocated into the nucleus, and here it binds to CBP/p300. Although a number of studies have been reported investigating the activation mechanism of IRF-3, there are a number of unresolved issues, especially on the phosphorylation sites, the oligomerization process and the binding mechanism with CBP/p300. In this report, the phosphorylated IRF-3 regulatory domain (IRF-3 RD) was prepared using the kinase IKK-i, and the active form of phosphorylated IRF-3 RD was identified. The paper also reports the crystal structure of the active form of the phosphorylated IRF-3 RD. Furthermore, the phosphorylation of Ser386 was found to be essential for its dimerization and binding with CBP/p300 using mutational analysis and mass spectrometry. Thus, we conclude that the phosphorylation of Ser386 is essential for activation of IRF-3.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据