4.4 Article

Integration of Genomic and Gene Expression Data of Childhood ALL Without Known Aberrations Identifies Subgroups with Specific Genetic Hallmarks

期刊

GENES CHROMOSOMES & CANCER
卷 48, 期 1, 页码 22-38

出版社

WILEY
DOI: 10.1002/gcc.20616

关键词

-

资金

  1. FIRB-MIUR [RBLA038RMA_005]
  2. Associazione Italiana per la Ricerca sul Cancro (AIRC) [43422006, 2690_2004/06]
  3. Fondazione Cariplo, Fondazione
  4. Fondazione CittA della speranza, Padova

向作者/读者索取更多资源

Pediatric acute lymphoblastic leukemia (ALL) comprises genetically distinct subtypes. However, 25% of cases still lack defined genetic hallmarks. To identify genomic aberrancies in childhood ALL patients nonclassifiable by conventional methods, we performed a single nuclecitide polymorphisms (SNP) array-based genomic analysis of leukemic cells from 29 cases. The vast majority of cases analyzed (19/24, 79%) showed genomic abnormalities; at least one of them affected either genes involved in cell cycle regulation or in B-cell development. The most relevant abnormalities were CDKN2A/9p21 deletions (7/24, 29%), ETV6 (TEL)/12p 13 deletions (3/24, 12%), and intrachromosomal amplifications of chromosome 21 (iAMP21) (3/24, 12%). To identify variation in expression of genes directly or indirectly affected by recurrent genomic alterations, we integrated genomic and gene expression data generated by microarray analyses of the same samples. SMAD 1 emerged as a down-regulated gene in CDKN2A homozygous deleted cases compared with nondeleted. The JAG1 gene, encoding the jagged I ligand of the Notch receptor, was among a list of differentially expressed (up-regulated) genes in ETV6-deleted cases. Our findings demonstrate that integration of genomic analysis and gene expression profiling can identify genetic lesions undetected by routine methods and potential novel pathways involved in B-progenitor ALL pathogenesis. (C) 2008 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据