4.2 Article

Functional dissection of Odorant binding protein genes in Drosophila melanogaster

期刊

GENES BRAIN AND BEHAVIOR
卷 10, 期 6, 页码 648-657

出版社

WILEY
DOI: 10.1111/j.1601-183X.2011.00704.x

关键词

Behavioral genetics; chemoreception; olfaction; proteomics; RNAi

资金

  1. NIH [GM059469]

向作者/读者索取更多资源

Most organisms rely on olfaction for survival and reproduction. The olfactory system of Drosophila melanogaster is one of the best characterized chemosensory systems and serves as a prototype for understanding insect olfaction. Olfaction in Drosophila is mediated by multigene families of odorant receptors and odorant binding proteins (OBPs). Although molecular response profiles of odorant receptors have been well documented, the contributions of OBPs to olfactory behavior remain largely unknown. Here, we used RNAi-mediated suppression of Obp gene expression and measurements of behavioral responses to 16 ecologically relevant odorants to systematically dissect the functions of 17 OBPs. We quantified the effectiveness of RNAi-mediated suppression by quantitative real-time polymerase chain reaction and used a proteomic liquid chromatography and tandem mass spectrometry procedure to show target-specific suppression of OBPs expressed in the antennae. Flies in which expression of a specific OBP is suppressed often show altered behavioral responses to more than one, but not all, odorants, in a sex-dependent manner. Similarly, responses to a specific odorant are frequently affected by suppression of expression of multiple, but not all, OBPs. These results show that OBPs are essential for mediating olfactory behavioral responses and suggest that OBP-dependent odorant recognition is combinatorial.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据