4.5 Article

Genome-scale profiling reveals a subset of genes regulated by DNA methylation that program somatic T-cell phenotypes in humans

期刊

GENES AND IMMUNITY
卷 13, 期 5, 页码 388-398

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/gene.2012.7

关键词

T-cell epigenetics; immune epigenetics; DNA methylation; gene expression; T-cell development; reprogramming differentially methylated region

向作者/读者索取更多资源

The aim of this study was to investigate the dynamics and relationship between DNA methylation and gene expression during early T-cell development. Mononuclear cells were collected at birth and at 12 months from 60 infants and were either activated with anti-CD3 for 24 h or cultured in media alone, and the CD4 + T-cell subset purified. DNA and RNA were co-harvested and DNA methylation was measured in 450 000 CpG sites in parallel with expression measurements taken from 25 000 genes. In unstimulated cells, we found that a subset of 1188 differentially methylated loci were associated with a change in expression in 599 genes (adjusted P value <0.01, beta-fold >0.1). These genes were enriched in reprogramming regions of the genome known to control pluripotency. In contrast, over 630 genes were induced following low-level T-cell activation, but this was not associated with any significant change in DNA methylation. We conclude that DNA methylation is dynamic during early T-cell development, and has a role in the consolidation of T-cell-specific gene expression. During the early phase of clonal expansion, DNA methylation is stable and therefore appears to be of limited importance in short-term T-cell responsiveness.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据