4.1 Article

PARP and CSB modulate the processing of transcription-mediated DNA strand breaks

期刊

GENES & GENETIC SYSTEMS
卷 87, 期 4, 页码 265-272

出版社

GENETICS SOC JAPAN
DOI: 10.1266/ggs.87.265

关键词

53BP1; base excision repair; camptothecin; DNA strand breaks; transcription-coupled repair

资金

  1. Japan Science and Technology Agency
  2. Ministry of Education, Culture, Sports, Science and Technology
  3. Ministry of Education, Culture, Sports, Science and Technology of Japan

向作者/读者索取更多资源

Topoisomerase 1 (Top1)-DNA cleavage complexes induced by camptothecin (CPT) cause DNA strand breaks during DNA replication or transcription. Although the cellular responses to replication-mediated DNA double-strand breaks have been well studied, the responses to transcription-mediated DNA strand breaks have not. Here, we show that poly (ADP-ribose) polymerase (PARP) and cockayne syndrome group B protein (CSB) modulate the CPT-induced formation of discrete p53-binding protein 1 (53BP1) nuclear foci at sites of transcription-mediated DNA strand breaks. Inhibition of PARP activity enhanced the formation of these foci, while knockdown of essential components of the base excision repair (BER) pathway did not. These findings suggest that PARP suppresses transcription-mediated 53BP1 foci formation, but that this does not occur through the BER pathway. In addition, knockdown of CSB, one of the key factors of transcription-coupled repair, slowed the kinetics of 53BP1 foci formation. These data suggest that PARP and CSB modulate the formation of 53BP1 foci during the processing of transcription-mediated DNA strand breaks.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据