4.1 Article

Different status of the gene for ribosomal protein S16 in the chloroplast genome during evolution of the genus Arabidopsis and closely related species

期刊

GENES & GENETIC SYSTEMS
卷 85, 期 5, 页码 319-326

出版社

GENETICS SOC JAPAN
DOI: 10.1266/ggs.85.319

关键词

Brassicaceae; Gene substitution; group II intron; splicing

资金

  1. MEXT, Japan
  2. Ministry of Education, Culture, Sports, Science and Technology of Japan [15208001]
  3. Japan Society for the Promotion of Science
  4. Grants-in-Aid for Scientific Research [15208001] Funding Source: KAKEN

向作者/读者索取更多资源

The ribosomal protein S16 (RPS16), the product of the rps16, is generally encoded in the chloroplast genomes of flowering plants. However, it has been reported that chloroplast-encoded RPS16 in mono- and dicotyledonous plants has been substituted by the product of nuclear-encoded rps16, which was transferred from the mitochondria to the nucleus before the early divergence of angiosperms. Current databases show that the chloroplast-encoded rps16 has become a pseudogene in four species of the Brassicaceae (Aethionema grandiflorum, Arabis hirsuta, Draba nemorosa, and Lobularia maritima). Further analysis of Arabidopsis thaliana and its close relatives has shown that pseudogenization has also occurred via the loss of its splicing capacity (Arabidopsis thaliana and Olimarabidopsis pumila). In contrast, the spliced product of chloroplast-encoded rps16 is observed in close relatives of Arabidopsis thaliana (Arabidopsis arenosa, Arabidopsis lyrata, and Crucihimalaya lasiocarpa). In this study, we identified the different functional status of rps16 in several chloroplast genomes in the genus Arabidopsis and its close relatives. Our results strongly suggest that nuclear- and chloroplast-encoded rps16 genes coexisted for at least 126 million years. We raise the possibility of the widespread pseudogenization of rps16 in the angiosperm chloroplast genomes via the loss of its splicing capacity, even when the rps16 encoded in the chloroplast genome is transcriptionally active.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据